\qquad

Future wearing surface $=2.0 \mathrm{in} .(25 \mathrm{psf})$
Concrete strength (girder) $f_{c}^{\prime}=5.0 \mathrm{ksi}$
Concrete strength at release (girder) $f_{c i}^{\prime}=4.0 \mathrm{ksi}$
Concrete strength (deck) $f_{c}^{\prime}=3.4 \mathrm{ksi}$
Unit weight of concrete $w_{c}=150 \mathrm{pcf}$

$$
\begin{aligned}
& \text { Parapet weight }=411 \mathrm{lb} / \mathrm{ft} \\
& E_{c}(\text { girder })=4,287 \mathrm{ksi} \\
& E_{c i}(\text { girder })=3,834 \mathrm{ksi} \\
& E(\text { deck })=3,535 \mathrm{ksi}
\end{aligned}
$$

Allowable tensile stress at service (midspan, Inventory) $=6 \sqrt{f_{c}^{\prime}}=0.424 \mathrm{ksi}$
Allowable tensile stress at service (midspan, Operating) $=7.5 \sqrt{f_{c}^{\prime}}=0.530 \mathrm{ksi}$
Prestressing strand strength, $f_{p u}=270 \mathrm{ksi} \quad E_{S}=28,500 \mathrm{ksi}$
Area of prestressing strand $\quad=0.153 \mathrm{in}^{2}$
Rating vehicle (Design) $=$ HS20 for rating based on the Standard Specifications
$=$ HL-93 for rating based on the LRFD Specifications
Rating Vehicle (Permit) $=$ FL-120 (See Fig. 18.6.2-1)
ADTT > 5000

Figure 18.6.2-1

FL-120 Permit Truck

18.6.3 Section Properties

The beam cross section is shown in Figure 18.6.3-1 and properties are listed below. The section properties are calculated based on the 7.5-in.-thick structural slab. The difference of material properties between slab and beam are considered with an equivalent width of slab. The effective flange width is calculated to be 98.00 in .

Non-Composite Section	Composite Section
$y_{N t}=24.73 \mathrm{in}$.	$y_{C t}=17.43 \mathrm{in}$.
$y_{N b}=20.27 \mathrm{in}$.	$y_{C b}=35.07 \mathrm{in}$.
$I_{N}=125,390 \mathrm{in.}^{4}$	$I_{C}=364,324 \mathrm{in} .{ }^{4}$
$A_{N}=560 \mathrm{in.}^{2}$	$A_{C}=1,166 \mathrm{in} .{ }^{2}$

Figure 18.6.3-1.
Cross Section at Midspan

18.6.4 Dead Load Calculations

The noncomposite section carries the girder self-weight and slab weight (8 in . thick), while the barrier and future wearing surface weights are uniformly distributed among the six girders and are carried by the composite section.

Girder moment:

$$
M_{G}=\frac{q L^{2}}{8}=\frac{(560)(0.150)(65)^{2}}{(144)(8)}=308.07 \mathrm{ft}-\mathrm{kips}
$$

Slab moment:

$$
M_{S}=\frac{q L^{2}}{8}=\frac{(8.17)(8)(0.150)(65)^{2}}{(12)(8)}=431.48 \mathrm{ft}-\mathrm{kips}
$$

Barrier moment:

$$
M_{B}=\frac{q L^{2}}{8}=\frac{(0.411)(2)(65)^{2}}{(6)(8)}=72.35 \mathrm{ft}-\mathrm{kips}
$$

Future wearing surface:

$$
M_{w}=\frac{q L^{2}}{8}=\frac{(43.5)(0.025)(65)^{2}}{(6)(8)}=95.72 \mathrm{ft}-\mathrm{kips}
$$

Total dead load moment: $\quad M_{d}=907.62 \mathrm{ft}$-kips

18.6.5 Stresses and Strength

18.6.5.1 Prestress Losses

Initial prestressing force/strand $=(0.153)(0.69)(270.0)=28.50 \mathrm{kips}$
Initial prestress force: $P_{s i}=(22)(28.50)=627.00$ kips

Eccentricity of prestress force: $e=y_{N b}-y_{b s}=20.27-4.27=16.0 \mathrm{in}$.

