BOX BEAM (BIII-48), SINGLE SPAN, COMPOSITE DECK

9.5.12.3.1 Minimum Interface Shear Reinforcement/9.5.13.1 Required Reinforcement at Face of Bearing

However, LRFD Article 5.8.4.4 states that the minimum reinforcement need not exceed the amount needed to resist 1.33 V_{hi}/ϕ as determined using LRFD Eq. 5.8.4.1-3.

$$(1.33 \times 4.09/0.9) = (0.28 \times 48.0) + 1.0[A_{vf}(60) + 0]$$

Solving for A_{vf} ,

 $A_{vf}(\text{reg'd}) < 0$ OK

9.5.12.4 Maximum Nominal Shear Resistance

 $V_{ni} \leq K_1 f_c' A_{cv}$ or $K_2 A_{cv}$

$$V_{ni}$$
 provided = $(0.28)(48) + 1.0\left(\frac{0.22}{12}(60.0) + 0\right) = 14.54 \text{ kips/in.}$

$$K_1 f_c A_{cv} = (0.3)(4.0)(48) = 57.6 \text{ kips/in.}$$

$$K_2A_{cv} = (1.8)(48) = 86.4 \text{ kips/in.}$$

Since provided
$$V_{ni} \leq 0.3 f_c' A_{cv}$$
 OK [LRFD Eq.5.8.4.1-4] $\leq 1.8 A_{cv}$ OK [LRFD Eq.5.8.4.1-5]

9.5.13 MINIMUM LONGITUDINAL REINFORCEMENT REQUIREMENT [LRFD Art.5.8.3.5] Longitudinal reinforcement should be proportioned so that at each section the following equation is satisfied:

$$A_{ps}f_{ps} + A_{s}f_{y} \ge \frac{M_{u}}{d_{v}\phi_{f}} + 0.5\frac{N_{u}}{\phi_{c}} + \left(\left|\frac{V_{u}}{\phi_{v}} - V_{p}\right| - 0.5V_{s}\right)\cot\theta$$
 [LRFD Eq.5.8.3.5-1]

where

 A_{ps} = area of prestressing strand at the tension side of the section, in.²

 f_{ps} = average stress in prestressing strand at the time for which nominal resistance is required, ksi

 A_s = area of nonprestressed tension reinforcement, in.²

 f_v = specified yield strength of reinforcing bars, ksi

 $M_{\rm u} = {\rm factored}$ moment at the section corresponding to the factored shear force, ft-kips

 d_v = effective shear depth, in.

 ϕ = resistance factor as appropriate moment, shear, and axial resistance. Therefore, [LRFD Art. 5.5.4.2] different ϕ factors will be used for the terms in LRFD Eq. 5.8.3.5-1, depending on the type of action considered.

 N_u = applied factored axial force = 0.0 kips

 V_{u} = factored shear force at section, kips

 V_p = component in the direction of the applied shear of the effective prestressing force, kips

 V_s = shear resistance provided by shear reinforcement, kips

 θ = angle of inclination of diagonal compressive stresses

9.5.13.1 Required Reinforcement at Face of Bearing

[LRFD Art.5.8.3.5]

For simple end supports, the longitudinal reinforcement on the flexural tension side of the member at inside face of bearing should satisfy:

$$A_{ps}f_{ps} + A_sf_y \ge \left(\frac{V_u}{\phi_{ii}} - 0.5V_s - V_p\right)\cot\theta$$
 [LRFD Eq.5.8.3.5-2]