DOUBLE-TEE BEAM (NEXT 36F), SINGLE SPAN, COMPOSITE DECK

9.8.12.3 Required Interface Shear Reinforcement/9.8.12.4 Maximum Nominal Shear Resistance
where
$c=$ cohesion factor, ksi
[LRFD Art. 5.8.4.3]
$\mu=$ coefficient of friction
[LRFD Art. 5.8.4.3]
$A_{c v}=$ area of concrete section resisting shear transfer, in. ${ }^{2}$
$A_{v f}=$ area of shear reinforcement crossing the shear plane, in. ${ }^{2}$
$P_{c}=$ permanent net compressive force normal to the shear plane, kips
$f_{y h}=$ specified yield strength of shear reinforcement, ksi
For cast-in-place concrete slabs placed on clean concrete girder surface intentionally
[LRFD Art. 5.8.4.3] roughened:
$c \quad=0.28 \mathrm{ksi}$
$\mu=1.0$
The actual contact width, b_{v}, between the slab and the beam is 106.0 in .

$$
A_{c v}=(106.0 \mathrm{in} .)(1.0 \mathrm{in} .)=106.0 \text { in. }{ }^{2}
$$

LRFD Eq. 5.8.4.1-3 can be solved for $A_{v f}$ as follows:
$9.40=(0.28 \times 106)+0.6\left[A_{v f}(60.0)+0\right]$
Solving for $A_{v f}$
$A_{v f}($ req'd $)<0$
Since the resistance provided by cohesion is greater than the applied force, provide the minimum required interface reinforcement.

9.8.12.3.1 Required Interface Shear Reinforcement

Minimum $A_{v f} \geq\left(0.05 A_{c v}\right) / f_{y h}$
[LRFD Eq. 5.8.4.4-1]
From the design of vertical shear reinforcement, a No. 4 four-leg bar at $15-\mathrm{in}$. spacing is provided from the beam extending into the deck. Therefore, $A_{v f}=0.64 \mathrm{in} .^{2} / \mathrm{ft}$.
$A_{v f}=\left(0.64 \mathrm{in.}^{2} / \mathrm{ft}\right)<\left(0.05 A_{c v}\right) / f_{y h}=0.05(106) / 60.0=0.088 \mathrm{in} .^{2} / \mathrm{in} .=1.06 \mathrm{in} .^{2} / \mathrm{ft} \quad \mathrm{NG}$
However, LRFD Article 5.8.4.4 states that the minimum reinforcement need not exceed the amount needed to resist 1.33 $V_{h i} / \phi$ as determined using LRFD Eq. 5.8.4.1-3.
$(1.33 \times 8.46 / 0.9)=(0.28 \times 106.0)+1.0\left[A_{v f}(60.0)+0\right]$
Solving for $A_{v f}$
$A_{v f}($ req'd $)<0 \quad$ OK

9.8.12.4 Maximum Nominal Shear Resistance

$V_{n i} \leq K_{1} f_{c}^{\prime} A_{c v}$ or $K_{2} A_{c v}$
$V_{n i}$ provided $=0.28(106)+1.0\left(\frac{0.64}{12}(60.0)+0\right)=32.88 \mathrm{kips} / \mathrm{in}$.
$K_{1} f_{c}^{\prime} A_{c v}=(0.3)(4.0)(106.0)=127.20 \mathrm{kips} / \mathrm{in}$.
$K_{2} A_{c v}=1.8(106.0)=190.8 \mathrm{kips} / \mathrm{in}$.
Since provided $V_{n i} \leq 0.3 f_{c}^{\prime} A_{c v} \quad$ OK
[LRFD Eq. 5.8.4.1-4]

$$
\leq 1.8 A_{c v} \quad \text { OK }
$$

[LRFD Eq. 5.8.4.1-5]

