__CHAPTER 9, DESIGN EXAMPLE 9.1a

BULB-TEE (BT-72), SINGLE SPAN, COMPOSITE DECK

9.1a.8.5.4 Stresses from Deck Shrinkage/9.1a.9 Strength Limit State

It is likely, however, that the full calculated force from deck shrinkage will not occur because of the presence of deck cracking and deck reinforcement. **Table 9.1a.8.5.2-1** summarizes the effect of applying 0, 50, or 100% of the calculated deck force on the stresses at load combination Service III.

Table 9.1a.8.5.4-1

Stresses at Midspan for Load Combination Service III Including the Effect of Deck Shrinkage.

Deck Shrinkage Force, %	Bottom of Beam, ksi Service III
0	+0.127
+50	-0.001
100	-0.128

9.1a.9 STRENGTH LIMIT STATE

Total ultimate bending moment for Strength I is: $M_u = 1.25(DC) + 1.5(DW) + 1.75(LL + IM)$

Using the values of unfactored bending moment given in **Tables 9.1a.4-1** and **9.1a.4-2**, the ultimate bending moment at midspan is:

 $M_u = 1.25(1,438.2 + 1,659.6 + 180) + 1.5(360) + 1.75(1,830.3 + 843.3) = 9,316$ ft-kips

Average stress in prestressing strands when $f_{pe} \ge 0.5 f_{pu}$:

$$f_{ps} = f_{pu} \left(1 - k \frac{c}{d_p} \right)$$
 [LRFD Eq. 5.7.3.1.1-1]

where

- f_{ps} = average stress in prestressing strand, ksi
- f_{pu} = specified tensile strength of prestressing strand = 270.0 ksi

$$k = 2\left(1.04 - \frac{f_{py}}{f_{pu}}\right)$$

$$= 0.28 \text{ for low-relaxation strands}$$
[LRFD Eq. 5.7.3.1.1-2]
[LRFD Table C5.7.3.1.1-1]

$$d_p$$
 = distance from extreme compression fiber to the centroid of the prestressing strands = $h - y_{bs}$ = 80.00 - 6.92 = 73.08 in.

c= distance from the extreme compression fiber to the neutral axis, in.
To compute c, assume rectangular section behavior and check if the depth of
the equivalent compression stress block, a, is less than or equal to t_s :[LRFD C5.7.3.2.2]

where
$$a = \beta_1 c$$

 $c = \frac{A_{ps}f_{pu} + A_s f_y - A'_s f'_y}{0.85f'_c \beta_1 b + kA_{ps} \frac{f_{pu}}{d_p}}$
[LRFD Eq. 5.7.3.1.1-4]
where
 $a = \text{depth of the equivalent stress block}$
 $A_{ps} = \text{area of prestressing strand} = 48(0.153) = 7.344 \text{ in.}^2$
 $A_s = \text{area of nonprestressed tension reinforcement} = 0 \text{ in.}^2$
 $A'_s = \text{area of compression reinforcement} = 0 \text{ in.}^2$
 $f'_c = \text{specified compressive strength of deck concrete} = 4.0 \text{ ksi}$
 $f'_y = \text{specified yield strength of tension reinforcement} = \frac{60.0 \text{ ksi}}{61}$
 $\beta_1 = \text{stress factor of compression block}$
 $(\text{LRFD Art. 5.7.2.2})$
 $a = 0.85 \text{ for } f'_c \le 4.0 \text{ ksi}$
 $a = 0.85 \text{ for } f'_c \le 4.0 \text{ ksi}$
 $a = 0.85$

b = effective width of compression flange = 108 in.